# He nama tāhūrua

Ka whakamahi ngā rorohiko o nāianei i ngā mati hei whakaahuahanga i te mōhiohio - koia te take e kīia ai he pūnaha matihiko. Ko te rautaki māmā, ko te rautaki o ia rā hei whakaahuahanga i ngā mati, ko te pūnaha tāhūrua, ka whakamahi i ngā mati e rua noa iho (ka tuhia te 0 me te 1 i te nuinga o ngā wā). Ka kīia ko te tāhūrua nā te mea e rua noa iho ngā mati e whakamahia ana, arā, e rua ngā tūnga. Kei tēnei kōwae ako me ngā akoranga e whai ake nei, ka tūhuratia te mahi a te pūnaha tāhūrua, me te nui o te whai mārama ki te whakaahuahanga raraunga.

## He aha te kaupapa nei?

Computers today use digits to represent information - that's why they're called digital systems. The simplest and most common way to represent digits is the binary number system, with just two digits (usually written as 0 and 1). It is called binary because there are only two different digits used, or two states.

See teaching this in action

A bit is usually stored in a memory cell inside a computer, which is an electronic circuit that can be set to a high voltage level (1) or a low voltage level (0); on disks they are represented by magnetism or optical reflection.

There are billions of these bits on a typical computer, and they are used to store text, numbers, images, video, and anything else that we need to store or transmit. On computer networks the bits are communicated by light, voltages or sound. Anything that can have two different values …

## Ngā Akoranga

Ngā tau 5 ki 7 Ngā wero tuhiwaehere
Kei ngā wāhanga mātai mā ngā kaiako, ka kitea hoki ngā kupu tīpoka mō te horopaki whānui. Ehara i te mea, me mōhio ngā tamariki 5 ki te 7 ngā tau ki ēnei mātauranga, heoi anō, ki te pātaihia, kei a koe te whakautu ki te pātai.
1 How binary digits work
Kāore e taea ki te reo Te Reo Māori
Kāore
2 Reinforcing sequencing in binary number systems
Kāore e taea ki te reo Te Reo Māori
Kāore
3 Codes for letters using binary representation
Kāore e taea ki te reo Te Reo Māori
Kāore
Ngā tau 8 ki 10 Ngā wero tuhiwaehere
1 How binary digits work
Kāore e taea ki te reo Te Reo Māori
Āe
2 Reinforcing sequencing in binary number systems
Kāore e taea ki te reo Te Reo Māori
Kāore
3 Codes for letters using binary representation
Kāore e taea ki te reo Te Reo Māori
Kāore

## Te Whakaurunga Marautanga

Ngā Mahinga Ngā Wāhanga Ako o te Marautanga Ngā Akoranga Tōmua?
He Kānara Tāhūrua, he Kānara Māori rānei mō tō Keke Te Mōhio ki te Pānui: Tuhituhi Āe
Nā wai te keke? Te Mōhio ki te Pānui: Tuhituhi Āe
He Hei Kakī Ingoa Tāhūrua Toi Āe
He Tauira Tāhūrua Toi Āe
He Puoro Tāhūrua Ngā Mahi a te Rēhia: Puoro Āe
He haurongo, he kōrero hoki mō te pūnaha tāhūrua Te Mōhio ki te Pānui: Pānui Te Mōhio ki te Pānui: Tuhituhi Kāore
Toi Tāhūrua Toi Āe